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Positivity preserving pointwise implicit schemes with
application to turbulent compressible flat plate flow
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SUMMARY

A family of positivity preserving pointwise implicit schemes applicable to source term dominated
problems is constructed, where the minimum order of spatial accuracy is one and the maximum is three.
It is designed for achieving steady state numerical solutions and is constructed through the analysis of
appropriate model problems, where the convective fluxes for the higher-order members are prescribed by
the Chakravarthy–Osher family of total variation diminishing (TVD) schemes. Multidimensionality is
facilitated by operator splitting. Numerical experimentation confirms the stability, convergence, accuracy,
positivity, and computational efficiency associated with the proposed schemes. These schemes are ideally
suited to solving the low-Reynolds number turbulent k–e equations for which the positivity of k and e
and the presence of stiff source terms are critical issues. Hence, using a finite volume formulation of these
schemes, the low-Reynolds number Chien k–e turbulence model is implemented for a flat plate geometry
and a series of turbulent flow (steady state) computations are carried out to demonstrate the positivity,
robustness, and reliability of the algorithm. The free-stream and initial k and e values are specified in a
very simple manner. Algorithm convergence acceleration is achieved using Multigrid techniques. The k–e
model flow predictions are shown to be in agreement with empirical profiles. Copyright © 2001 John
Wiley & Sons, Ltd.

KEY WORDS: flat plate; k–e model; point implicit; positivity preserving; pseudo-time stepping; source
terms

1. INTRODUCTION

The numerical approximation of convection terms arising in partial differential equations
(PDEs) is still an unresolved issue in the field of computational fluid dynamics (CFD). The
discretization of these terms should be so as to yield stable, accurate, and ideally monoton-
icity preserving numerical schemes. The simplest example of an accurate discretization for
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convection is to use central differencing, but it will lead to the numerical solutions containing
grid-based oscillations in the high gradient regions and in the vicinity of extrema. For strongly
coupled systems of equations and those that are source term dominated, these oscillations can
show growth in an unbounded fashion leading to blow-up. Godunov [1] showed that all
monotone linear schemes can, at best, be only of first-order spatial accuracy. For central
differenced schemes, numerical stability and the damping of oscillations can be achieved with
the use of appropriate artificial dissipation models. However, the level of dissipation that needs
to be included in a numerical algorithm (and its variation locally) to guarantee oscillation-free
solutions is not known in advance and excessive amounts will degrade the solution quality. On
the other hand, the use of a spatially first-order accurate monotonicity preserving scheme will
include excessive numerical dissipation in the solutions generated—particularly in situations
such as high-Reynolds number turbulent fluid flows involving geometries where the flow is not
in alignment with the mesh. One key requirement in turbulence modeling is to be able to
distinguish the differences in the solutions of alternative turbulence models. Grid refinement
can be used to reduce numerical errors but this technique is not always practical in situations
such as in flows over complex geometries and in three-dimensional flows (due to computa-
tional storage requirements and expense). Hence, an attractive option is to consider higher-
order non-linear convection algorithms, which contain ‘built-in’ numerical dissipation and
which also do not generate unphysical oscillations.

Harten [2] set up a mathematical framework for the construction of non-linear higher-order
monotonicity preserving upwind schemes based on the total variation diminishing (TVD)
concept. TVD schemes are based on the principle that a discrete convective flux consists of a
first-order accurate monotone flux an a set of correction terms with the effects of the latter
limited (usually referred to as flux-limited) in such a manner so as to render the discretization
monotonicity preserving; when these correction terms are not limited, the resulting convective
flux is spatially high order (for example, second- or third-order) but non-monotone. In the
smooth parts of numerical solutions, the correction terms are not limited, which results in the
underlying higher-order schemes being used. However, in regions with steep gradients or
exterma, these terms are limited so as to suppress the creation of any grid-based oscillations
and hence in such regions, TVD schemes are of lower spatial accuracy than in smooth solution
regions.

The process by which the above-stated correction terms are limited is not unique and hence
has led to the development of many TVD schemes. An in-depth survey of various TVD
schemes is given in References [3,4].

The above discussion applies only in one space dimension to linear and non-linear scalar
equations and also to systems of linear equations. Genuinely multidimensional TVD schemes
are quite sophisticated and not easy to construct—in particular, invoking of the flux-limiting
procedure in multidimensions and maintaining high accuracy; some examples of such schemes
are given in References [5–7]. Therefore, what is commonly done in steady state calculations
is to apply the one-dimensional TVD schemes to each of the co-ordinate directions separately
(operator splitting), which is also the approach adopted in the present work. There is, however,
no mathematical theory to guarantee that this approach leads to oscillation-free solutions,
although it has been observed to be effective in inviscid flow computations [8].

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 903–938
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TVD schemes have been primarily constructed for homogeneous hyperbolic PDEs and
although the inclusion of source terms in practice can be straightforward, there is no formal
theory regarding the monotone properties of such schemes. Moreover, the effectiveness of
TVD schemes for source term dominated problems is often not adequately described in the
literature and therefore one of the primary objectives in the present paper is to analyze this.
Source terms must also be dealt with effectively—particularly in stiff problems without which
instability and slow convergence can result; in this paper, pointwise implicit (or point implicit)
methods are used. Point implicit methods solve a given system of PDEs at each grid point in
an implicit fashion by treating the source terms implicitly and the unknown variables at other
points explicitly. The resulting pointwise systems, when they are non-linear, can be solved with
the Newton–Raphson method (if good enough starting guesses are available). These schemes
have the advantage of being quicker than solving the global system of equations but
nevertheless take full account of the force of the source terms. Steady state numerical solutions
are achieved by time marching the unsteady solutions.

The k–e system of equations used to model turbulent flow is an ideal example where
monotonicity preserving numerical schemes are required for the discretization of convection,
because k and e are essentially positive-valued variables but grid-based oscillations can drive
them negative. However, in the literature, the use of TVD schemes for the solution of the k–e

equations is not very common; some instances of their use are given in References [9–13] and
only the first three of these references consider compressible flows. Further, in all of these
references, with the exception of Reference [9], the near-wall turbulence is modeled using either
wall functions or a separate low-Reynolds number model. Low-Reynolds number k–e models,
which are valid throughout the whole of the flow field, are hence preferred, but in the vicinity
of solid boundaries the source terms exhibit stiffness [14]; although this can be a severe
restriction, pointwise implicit methods are well suited to handling such source terms. In the
present research it is the Chien low-Reynolds number k–e model that is employed [15–17].
With regard to accuracy, Reference [9] employs a second-order accurate TVD scheme and
Reference [11] a third-order accurate one. In Reference [10] it is the Chakravarthy–Osher
family of TVD schemes (also given in References [4,8,18,19]) that is used and it will be
employed in the present research too in order to perform turbulent flow computations because:
(i) a family of high-order accurate TVD schemes can be generated by merely varying a single
parameter and (ii) it also includes a third-order accurate TVD scheme, which would be the
ideal candidate to use. In general, advection schemes that are accurate to odd orders are
dissipative and dissipative truncation errors help towards damping-out oscillations. Therefore,
a spatially third-order accurate positivity preserving (i.e., k and e remain ]0) pointwise
implicit method would be an ideal scheme to use in the numerical solution of the Chien
low-Reynolds number k–e equations.

An outline of this paper is as follows. First, the alternative first-order accurate point implicit
methods are developed and the conditions for stability and positivity preservation are
established. These schemes are then extended to higher-order spatial accuracy using the
Chakravarthy–Osher family of TVD schemes and numerical experimentation is performed for
a source term dominated one-dimensional scalar and a two-dimensional scalar hyperbolic
model problem. The extension of this analysis to a two-dimensional equation pair is presented
thereafter. Finally, the numerical algorithm in a finite volume formulation is employed to
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compute fully and partly (steady state) turbulent compressible flows over a flat plate with the
Chien low-Reynolds number k–e model.

2. POINT IMPLICIT METHODOLOGY

Point implicit methods solve a given system of PDEs at each grid point in an implicit fashion
by treating the source terms implicitly and the unknown variables at other points (from the
discretization of convection and diffusion terms) explicitly. The resulting pointwise equations
when they are non-linear can be solved with the Newton–Raphson method (if good enough
starting guesses are available). As it is steady state solutions that are of interest, they are
achieved by pseudo-time stepping the unsteady equations with the time derivatives discretized
in a forward Euler manner: as shown in Reference [14] it is advantageous to pseudo-time step
to steady state than to solve the steady equations directly. There are two iteration processes:

(a) an outer iteration, which involves the updating of the nodewise variables in time over the
whole mesh and

(b) an inner iteration at each grid point to solve the pointwise equations.

As it is positive-valued solutions that will be sought (because the ultimate aim is to solve the
k–e equations and k and e are essentially positive quantities), computable restrictions for the
pseudo-time steps are determined in order to ensure:

1. the existence of a positive-valued solution for the outer iterations at each grid point (ideally
a single positive solution but otherwise multiple positive solutions);

2. the numerical stability and positivity preservation of the algorithm for the outer iterations
at each grid point; and

3. that the solution of the local point equations (even when using the Newton method for
non-linear equations) generates positive-valued solutions.

3. ONE-DIMENSIONAL POINT IMPLICIT SCHEMES

Spatially first-order accurate positivity preserving, point implicit schemes are described below.
In Section 3.2 they are extended to higher spatial accuracy.

3.1. First-order accurate point implicit schemes

The convection terms will be discretized using first-order accurate upwind differences and the
diffusion terms will be approximated by standard central differences. Then, three different
basic point implicit schemes can be constructed by discretizing the convection–diffusion terms
aUx−bUxx (for the case a, b\0) so that on a grid of uniform spacing Dx and at a node j and
pseudo-time level n+1

aUx−bUxx �j=
a(Uj

n−Uj−1
n )

Dx
−

b(Uj+1
n −2Uj

n+Uj−1
n )

Dx2 (1)
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or

aUx−bUxx �j=
a(Uj

n+1−Uj−1
n )

Dx
−

b(Uj+1
n −2Uj

n+1+Uj−1
n )

Dx2 (2)

or

aUx−bUxx �j=
a(Uj

n+1−Uj−1
n+1)

Dx
−

b(Uj+1
n −2Uj

n+1+Uj−1
n+1)

Dx2 (3)

which will be called explicit, semi-implicit and Gauss–Seidel convection–diffusion respectively.
For the model problem

[Ut ]+aUx−bUxx=S(U), a, b\0 (4)

with a linear source term S(U)=sU such that s-0, the resulting numerical schemes with
n=a ·Dtj/Dx, m=b ·Dtj/Dx2 (Dtj is the pseudo-time step at node j ) will satisfy modified
maximum principles (modified to include source term contributions—see Reference [14]) for
explicit convection–diffusion when (i ) n+2m51 and if s\0 then also (ii) 1−Dtjs\0 and for
the semi-implicit and Gauss–Seidel discretizations when 1+n+2m−Dtjs\0. These relations
enable the determination of upper bounds for time steps that will ensure the satisfaction of the
modified maximum principles.

Although the time step restrictions are the same, the Gauss–Seidel discretization (which
exploits the latest information arising by sweeping the grid) is expected to show faster
convergence to the steady state (see, for example, Reference [20]) than the semi-implicit scheme
but it is only effective when the wind and grid sweeping directions are coincident, which is a
severe restriction.

3.1.1. One-dimensional scalar model problem. The estimation of the pseudo-time step restric-
tions to satisfy conditions (1)–(3) of Section 2 will be demonstrated via the model problem

[Ut ]+aUx−bUxx=cU(1−U); a, b, c (global constants)\0 (5)

which, like the k–e equations (assuming uniqueness and existence), has two constant steady
states: a trivial root U=0 and also another positive root U=1.0. This is an autonomous
equation [21–23] and it can be shown that the former is an unstable root and the latter is an
asymptotically stable one. Because the analytic solution to Equation (5), in the absence of
convection–diffusion with U(t=0)=U0\0, is

U(t)=
U0 ect

(1−U0)+U0 ect\0 Öt�R+ (6)

the aim is to maintain the positiveness of U with a positivity preserving numerical discretiza-
tion for the convection–diffusion terms—because only oscillations due to the discretization of
convection can cause negative values in U(x, t).

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 903–938
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The time step restrictions are derived in Appendix A and the analysis shows that the
Gauss–Seidel discretization is expected to provide the fastest convergence to the steady state,
but it is very restrictive for real problems as explained above. The semi-implicit method
through numerical experimentation has been shown [14] to exhibit convergence no better than
the explicit method. It is also not elementary to construct spatially higher-order accurate
schemes based on the semi-implicit and Gauss–Seidel schemes, and hence hereafter only the
explicit discretization will be considered.

3.2. Higher-order accurate point implicit schemes

The first-order accurate convective flux will now be replaced by a higher-order monotone flux
from the Chakravarthy–Osher family of TVD schemes. This family of schemes and its
implementation have been adequately described in References [8,10,14,18,19,24] and it suffices
to state here that different members of the family are generated by varying a single parameter
f. The resulting unlimited schemes and their spatial accuracy for a single space dimension are
summarized in Table I.

As the aim of the present research is to use the most accurate discretization for the
convection terms, it will be attempted to employ the spatially third-order accurate scheme,
which results when f=1/3. The following objectives would like to be achieved:

� to find the most effective means of prescribing the values of variables in the fictitious grid
points (due to the extended convection stencil)—which are beyond the boundary points;

� to study the convergence and the global accuracy of the limited and unlimited TVD
schemes; and

� to analyze whether the source terms adversely affect the performance of the TVD schemes.

It is vital that the unlimited TVD scheme (with f=1/3) is implemented in such a manner
that it is as close as possible to being third-order accurate; otherwise the accuracies of the
limited schemes will also be affected.

Table I. The Chakravarthy–Osher family of TVD schemes (TE, truncation
error; nmax, maximum permitted CFL number).

f Name of scheme TE nmax

2/5O(Dx3)Third-order1/3

+
1
3
(3f

(x3 · (Dx)2 2/3−1 Fully upwind

1/2+
1
12
(3f

(x3 · (Dx)2Fromm’s0

1/2 Low TE second-order −
1
24
(3f

(x3 · (Dx)2 1/3

−1/3 No name +
1
6
(3f

(x3 · (Dx)2 4/7
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The discretization of the time derivatives and the diffusion terms remain unchanged (from
before). It is clear that the time step analysis performed for the first-order accurate convective
flux extends naturally to the present case, with only the restriction for the positivity preserva-
tion of the algorithm requiring the modification where n+2mBnmax (Table I).

3.3. Numerical experiments

To validate the above analysis, the following model problem is studied:

[Ut ]+aUx=c(x)U(1−U); a (constant)\0 (7)

for x�V= [0, 1] with c(x)=1−4p cos(4px) and the Dirichlet boundary condition U(0, t)=
0.5; the initial conditions are U(x, 0)=0.5 Öx�V. The function c(x) was included in order to
ensure that the analytic steady state solution to this equation

U(x)=
eĉ(x)/a

1+eĉ(x)/a (8)

where ĉ(x)=	 c(x) dx=x−sin(4px), was of a non-monotone character.
Details regarding the numerical solution of this equation will now be discussed. The

fictitious grid around the computational domain is defined by linearly extrapolating the x
values from within the domain, which ensures the smooth distribution of the grid points. The
variables at the fictitious nodes are assigned their values by extrapolating from within the
domain by using one of the following as exemplified for a node N+1 (where x\1):

zeroth-order: UN+1=UN (9)

first-order: UN+1=2UN−UN−1 (10)

second-order: UN+1=3UN−3UN−1+UN−2 (11)

third-order: UN+1=4UN−6UN−1+4UN−2−UN−3 (12)

As the numerical scheme (with f=1/3) should ideally be third-order accurate, it is not
necessary to use extrapolations as high as third order, which is only included for comparison
purposes. Generally, for a numerical method (applied to a mixed initial boundary value
problem) that is spatially accurate to order p, the use of extrapolation to the order of p−1 is
sufficient to maintain the order of accuracy [25].

The results of numerical experiments performed using the above model problem on uniform
grids with a=1.0 are given in Figures 1–3 and Table II. For the Newton method, the starting
guesses used to compute variables at time level n+1 were the values of the variables at time
level n (previous time values).

The convergence history (on a mesh having 101 grid points) for the unlimited TVD scheme
with f=1/3 shows that the numerical algorithm is convergent for all of the different

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 903–938
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Figure 1. One-dimensional hyperbolic model problem: convergence history for various extrapolations.
(��dU ��� ��Un+1−Un��2, n is the pseudo-time level).

Figure 2. One-dimensional hyperbolic model problem: plot of L1 norms of the global error for various
extrapolations.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 903–938
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Figure 3. One-dimensional hyperbolic model problem: computational efficiency plot showing the cost of
error reduction for the first-order and third-order (unlimited and limited with quadratic extrapolation)

methods.

Table II. Global accuracies of the unlimited TVD scheme with f=1/3 for the
one-dimensional model problem with different extrapolations.

Global accuracyExtrapolation

(Dx)0.98None (FOU)
(Dx)0.99Zeroth
(Dx)2.95First

Second (Dx)2.99

extrapolations and they have similar convergence profiles and rates: this scheme requires more
iterations than the first-order upwind (FOU) scheme due to the stricter Courant–Friedrich–
Lewy (CFL) restrictions. The global accuracies associated with each of the extrapolations
(computed using a least-squares fit on the straight line regions of the L1 error plots) are
summarized in Table II and it is clear that, for the unlimited schemes, both linear and
quadratic extrapolations yield a nearly third-order accurate scheme, with the latter producing
a better result. The L1 error plots also serve to show that although on the coarsest grid the
errors from different methods and extrapolations are of similar value, the rate of fall of error
with grid spacing is greatest for the higher-order methods. Furthermore, the computational
efficiency plot in Figure 3 indicates that upon grid refinement, the third-order method (with
second-order extrapolation) with and without flux limiting is significantly more efficient at
reducing errors than the first-order method, thus making it a more attractive method to use.
As expected, the limited higher-order scheme exhibits errors of larger magnitude than the
unlimited version.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 903–938
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Table III, in which the results of the limited and unlimited computations with the
Chakravarthy–Osher family of TVD schemes are summarized, indicates that in all cases the
limited and unlimited algorithms are convergent and their convergence rates (for each value of
f) are similar. The limited schemes are of higher global accuracy than the unlimited ones and
such a behavior is also documented in Reference [18]. For f=1/3 the limited and unlimited
schemes (with quardratic extrapolation) are nearly third-order accurate, while for other values
of f the schemes (with linear extrapolation) are post-second-order accurate. Numerical
experiments also revealed that the time step restrictions for the inner (Newton) iteration were
not required to be enforced; therefore they are not employed hereafter.

Hence, it is possible to conclude that the present implementation of the Chakravarthy–Os-
her family of TVD schemes for the solution of the model problem (7) has yielded a convergent
algorithm for all admissible values of f, even with the presence of a non-linear source term.
For f=1/3 with quadratic extrapolation, both the limited and unlimited schemes are nearly
spatially third-order accurate. The numerical algorithm converges to the desired solution
(positive valued, attractive solution), thereby indicating the positivity property of the
algorithm.

4. TWO-DIMENSIONAL POINT IMPLICIT SCHEMES

The first-order accurate explicit discretization of the convection terms on a uniform mesh with
mesh spacing Dx in the x-direction and Dy in the y-direction at node (i, j ) are now given by
the following three point stencils:

1. a1\0 and a2\0: [a1Ux+a2Uy ]i, j
n =a1

Ui, j
n −Ui−1, j

n

Dx
+a2

Ui, j
n −Ui, j−1

n

Dy
(13)

2. a1B0 and a2\0: [a1Ux+a2Uy ]i, j
n =a1

Ui+1, j
n −Ui, j

n

Dx
+a2

Ui, j
n −Ui, j−1

n

Dy
(14)

3. a1B0 and a2B0: [a1Ux+a2Uy ]i, j
n =a1

Ui+1, j
n −Ui, j

n

Dx
+a2

Ui, j+1
n −Ui, j

n

Dy
(15)

4. a1\0 and a2B0: [a1Ux+a2Uy ]i, j
n =a1

Ui, j
n −Ui−1, j

n

Dx
+a2

Ui, j+1
n −Ui, j

n

Dy
(16)

For the higher-order monotone discretization of the convection terms, the operator splitting
approach is adopted, where the one-dimensional formulations are applied in each of the spatial
directions separately. The diffusion terms are also constructed by applying the one-dimensional
discretizations in each of the spatial directions separately.

When moving from one to two dimensions, the character of the pointwise discrete equations
remains unchanged and hence the previously described pseudo-time step analysis is also valid
here with the exception that the restriction for the positivity preservation of the explicit
algorithm is now given by nx+ny+2mx+2myBnmax, where

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 903–938
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nx�a1

Dt
Dx

, ny�a2

Dt
Dy

, mx�b1

Dt
Dx2 , my�b2

Dt
Dy2 (17)

and b1, b2 are diffusion coefficients in the x- and y-directions respectively, and nmax is as in
Table I.

4.1. Numerical experiments

Consider the model problem

[Ut ]+a1Ux+a2Uy=c(x, y)U(1−U), a1, a2 (constant)\0 (18)

in (x, y)�V%= [0, 1]× [0, 1] with c(x, y)=1−4p cos(4px)−4p cos(4py) and the boundary
conditions

U(0, y, t)=
eF(y)/a2

1+eF(y)/a2
for 05y51 (19)

U(x, 0, t)=
eF(x)/a1

1+eF(x)/a1
for 05x51 (20)

where F(z)=0.5z−sin(4pz). The initial conditions are taken to be U(x, y, 0)=U(0, 0, t)=
0.5. This problem has the analytic steady state solution

U(x, y)=
eF(x)/a1+F(y)/a2

1+eF(x)/a1+F(y)/a2
(21)

which clearly does not exhibit monotone behavior.
Numerical experiments with this model problem were conducted for a1=1.0 and a2=1/
2

and the results are presented in Figures 4–6 and Table IV. Here too, the Newton method was
employed as in the one-dimensional model problem.

The convergence histories (on a 101×101 grid) show that the unlimited TVD algorithm
with f=1/3 is convergent for all of the different extrapolations used and that they have
similar convergence rates. The global accuracies (computed as for the one-dimensional model
problem) for the different extrapolations presented in Table IV show that in order to maintain
an accuracy close to third order, linear extrapolation (unlike for the 1-D model problem) is not
sufficient and at least quadratic extrapolation is required. Third-order extrapolation too is seen
to give the desired results producing smaller errors than the other extrapolations (perhaps due
to a smaller error constant) and such an observation has also been reported by Hayase et al.
[26] for a comparison between second- and third-order accurate boundary conditions used in
a QUICK scheme. The L1 error plot shows that even on the coarsest grid, the error from the
higher-order methods is significantly smaller than the first-order method and that the higher-
order methods (upon grid refinement) enable the errors to fall at a sharper rate. The
computational efficiency plot in Figure 6 indicates that the third-order method (unlimited and
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POSITIVITY PRESERVING POINTWISE IMPLICIT SCHEMES AND APPLICATIONS 915

Figure 4. Two-dimensional hyperbolic model problem: convergence history for various extrapolations.
(��dU ��� ��Un+1−Un��2, n is the pseudo-time level).

Figure 5. Two-dimensional hyperbolic model problem: plot of L1 norms of the global error for various
extrapolations.

limited with quadratic extrapolation) is far superior to the first-order method in error
reduction and extremely fine grids (with massive storage requirements) would be required by
the latter if it were to compete with the former.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 903–938
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Figure 6. Two-dimensional hyperbolic model problem: computational efficiency plot showing the cost of
error reduction for the first-order and third-order (unlimited and limited with quadratic extrapolation)

methods.

Table IV. Global accuracies of the unlimited TVD scheme with f=1/3 for the
two-dimensional model problem with different extrapolations.

Global accuracyExtrapolation

(Dx)0.93None (FOU)
(Dx)0.99Zeroth

First (Dx)2.17

(Dx)2.89Second
Third (Dx)3.07

Table V summarizes the results of limited and unlimited computations carried out with the
two-dimensional model problem. When specifying the values of the variables in the fictitious
grid points, for the scheme with f=1/3, quadratic extrapolation was employed and for the
others, linear extrapolation was used. The following conclusions can be made: in all cases the
algorithms are convergent, the limited and unlimited schemes for each value of f have similar
orders of spatial accuracy, the scheme with f=1/3 is nearly third-order accurate (with a slight
reduction with respect to the one-dimensional observations), and for other values of f the
schemes are in the region of second-order accuracy.

Therefore, the conclusions reached for the one-dimensional test case also extend to the
two-dimensional situation and the use of the operator splitting approach is effective in
constructing two-dimensional TVD schemes for steady state computations involving source
terms.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 903–938
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5. EXTENSION TO SYSTEMS OF EQUATIONS

It will now be demonstrated how the analysis for the scalar equations can also be extended to
a system of two equations. The problem under consideration is

[Ut ]+a1Ux+a2Uy−b1Uxx−b2Uyy=U2−4U+VSu (22)

[Vt ]+a1Vx+a2Vy−b1Vxx−b2Vyy=U+V−
4
9

V2S6 (23)

with a1-0, a2-0, b1, b2\0. This particular problem was constructed, because as in the
assumption for the k–e equations (uniqueness and existence of solutions), it is required to have
at least one pair of asymptotically stable roots (U*, V*) such that U*, V*\0, while the other
roots (including the trivial one) are unstable. For the above model equations, in the absence
of the convection–diffusion terms and in steady state, U=1, V=3 is the stable root and
(U, V)= (0, 0), (9/2, −5/2), (5/2, 15/4) are the unstable ones. Figure 7 presents a plot
containing the curves Su=0, S6=0 and also arrows indicating the signs and magnitudes of
vector components (Su, S6) in the U–V plane and it clearly indicates the asymptotic stability
of the four roots. In the neighborhood of the stable root (U=1, V=3), the arrows point
towards it from all directions, but in the vicinity of the others there are arrows pointing away
from them, thereby implying that they are unstable.

Figure 7. Source term vectors for the two-dimensional model pair of equations showing the asymptotic
stability of the roots.
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In the above pair of model equations, the convection and diffusion coefficients were taken
to be the same because in the two-dimensional k–e equations, the convection coefficients for
the k and e equations are identical and the diffusion coefficients have similar values.

Under the explicit discretization for the convection–diffusion terms, the resulting point
equations at a node (i, j ) and pseudo-time level n+1 on a mesh with uniform mesh spacings
Dx and Dy (in the two co-ordinate directions) for the special case a1, a2\0 are

Dti, jw2− (1+4Dti, j)w+Dti, jz+{Ui, j
n −Di, j

n Dti, j}F1(w, z)=0 (24)

4
9

Dti, jz
2+ (1−Dti, j)z−Dti, jw−{Vi, j

n −Ei, j
n Dti, j}F2(w, z)=0 (25)

where w=Ui, j
n+1, z=Vi, j

n+1 and Di, j
n , Ei, j

n are the discrete convection–diffusion terms for the
U and V equations respectively.

The roots (w, z) are formed when F1=F2=0, which represents the intersection of two
bi-quadratics, one in w and the other in z. It is not trivial to determine the conditions on Dti, j

to achieve this (such that w, z\0). Moreover, even if this were possible, as multiple positive
(w, z) roots can occur, it is not straightforward to decide which particular root to converge to.
Therefore, the conditions on Dti, j to produce positive-valued w and z roots are determined by
analyzing a simplified system of decoupled quadratic equations, where, in the quadratic
equation for w, z is fixed at the previous time level and vice versa so that

Dti, jw2− (1+4Dti, j)w+{Ui, j
n + (Vi, j

n −Di, j
n )Dti, j}=0 (26)

4
9

Dti, jz2+ (1−Dti, j)z−{Vi, j
n − (Ei, j

n −Ui, j
n )Dti, j}=0 (27)

5.1. Time step restrictions

The aim is to find the restrictions on the time step that will ensure the existence of a single, real
and positive-valued (w, z) root. If this is not possible, it will be attempted to create multiple
positive-valued, real (w, z) roots. Each of the above decoupled quadratic equation (26) and
(27) has the same form as the point one-dimensional scalar model equations, and hence time
step restrictions can be determined by extending that analysis, as shown in Reference [14].
When these time step restrictions are used, however, for the simplified two-dimensional model
pair of point equations (above) two real positive w roots and a single real positive z root will
occur. For the true two-dimensional model pair of point equations (24) and (25), it is also
expected that these time step restrictions will enable the existence of at least a single real
positive attractive (w, z) root and that the Newton method along with a sufficiently accurate
initial guess will be able to converge to this root.

The numerical stability and positivity preservation conditions can only be evaluated once the
two-dimensional model pair of equations has been suitably linearized. Consider linearizing the
model system about the asymptotically stable root, U=1.0, V=3.0 (with u=U+1.0,
6=V+3.0) so that

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 903–938
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[ut ]+a1ux+a2uy−b1uxx−b2uyy= −2u+6 (28)

[6t ]+a16x+a26y−b16xx−b26yy=u−
5
3
6 (29)

It is not obvious how to extend the one-dimensional scalar modified maximum principle
analysis (Section 3.1) to a coupled linear system of equations, but a technique that is applicable
under special circumstances is presented in Reference [14]. That method involves writing the
discrete equivalents of Equations (28) and (29) together in matrix form and finding the
conditions to get positive-valued coefficients for the variables Un, Un+1, Vn, Vn+1 and then
forcing Cn+15Cn, where Cn=maxÖi, j{Ui, j

n , Vi, j
n }. Using the earlier notation it then turns out

that a modified principle is established if nx+ny+2mx+2my5nmax.
The overall pointwise time step limits used in the algorithm (as in the proposition of

Appendix A) are determined by taking into account all of the restrictions that apply to both
(U and V) point equations (simultaneously).

With regards to the numerical solution of the non-linear point equations (24) and (25), the
starting guesses for the Newton method are be taken to be (Ui, j

n , Vi, j
n ), which are the previous

time values of (U, V) and the exiting criterion is

1
Dti, j

max(�F1�, �F2�)BTol (30)

where ‘Tol’ is a sufficiently small prescribed tolerance.
Numerical examples to verify the reliability of this analysis are given in Reference [14] but

a proper study of accuracy is not possible due to the lack of availability of analytic solutions
(unlike the previously described model problems). A similar model problem but with stiff
source terms (with a stiffness ratio of 999) has also been studied in Reference [14]. Further-
more, as the true test of the validity of this analysis will be the solution of the Chien k–e

system of equations, that will be the test considered (next) in this paper.

6. FINITE VOLUME FORMULATION OF THE POINT IMPLICIT SCHEMES

Like most numerical schemes, TVD schemes have been primarily constructed for use on
uniform grids. The extension of these schemes to non-uniform grids is not trivial, particularly
with respect to maintaining the same accuracy as that on uniform grids. The finite volume
procedure given here is based on that of References [8,10,19] and it is constructed by first
transforming the differential equations from a physical domain to a computational domain
consisting of rectangular cells and then discretizing the resulting metrics (with central differ-
ences [27]) in computational space. Further details regarding the transformations can be found
in References [27,28] and the derivation of the finite volume scheme and the resulting time step
restrictions (which are direct extensions from the finite difference formulation) are given in
Reference [14].
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In order to test this finite volume algorithm, the two-dimensional hyperbolic model problem
was solved on a series of stretched rectangular meshes. The meshes were generated using
geometric progressions with one starting at the lower boundary and extending in the increasing
y-direction, while the other was started at the left-hand boundary and extended in the
increasing x-direction. The same geometric ratio, r, and the number of grid points were
maintained in the two spatial directions; the computational domain was always [0, 1]× [0, 1].
The results on a series of meshes each containing 61×61 nodes are included in Table VI. It
is evident that in all cases the algorithm converges to the given tolerance (1.0×10−12) and the
errors on the stretched meshes do not differ significantly from that on the uniform mesh
(r=1.0). The limited and unlimited forms of the TVD scheme (with f=1/3) are seen to
produce errors that are appreciably less in magnitude than those for the FOU scheme.

Therefore, it can be concluded that the finite volume formulation of the point implicit
scheme encompassing the Chakravarthy–Osher TVD scheme is capable of generating accurate
numerical solutions (which are in keeping with higher-order spatial discretizations) on both
uniform and stretched rectangular meshes with non-trivial levels of stretching.

7. TURBULENT FLAT PLATE COMPUTATIONS

The flat plate geometry is ideally suited to test turbulent flow computations because a
well-known set of empirical solutions are available for it (for example, see Reference [14]).
Furthermore, the k–e model is a good system of equations to test positivity preserving
numerical methods because the positiveness of k and e can easily be checked and numerical
algorithms usually show blow-up if these quantities become negative.

The mean-flow effects are modeled using the mass-averaged compressible Navier–Stokes
equations [14,16,17,29–36] and the turbulent effects are included by the use of the Chien
low-Reynolds number k–e model [15–17] and by relying on the eddy–viscosity hypothesis
[37]; the turbulence model is presented in Appendix B. The mean-flow equations are solved
using an explicit cell vertex finite volume scheme as demonstrated in Reference [14]. In this
method the variables are stored at cell vertices (nodes). First, the node-based variables are
integrated along cell edges (as a line integral) to recover their gradients at cell centroids, which
are then interpolated to nodes to recover node-based gradients: this process is spatially
second-order accurate. Then, the inviscid and viscous fluxes are assembled at nodes and they

Table VI. L1 errors for the finite volume TVD scheme on stretched meshes (r, geometric ratio).

r FOU TVD unlimited (f=1/3) TVD limited (f=1/3)

L1 error IterationsL1 error Iterations L1 error Iterations

8.55×10−4 10341.000 3.11×10−2 274 7.04×10−4 1090
17368.16×10−410965.13×10−42662.96×10−21.025

1.89×10−31.050 9412.61×10−2 244 1.02×10−3 1068
1.075 9242.08×10−310581.60×10−32192.19×10−2

8773.09×10−311661.96×10−31971.81×10−21.100
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are integrated in the same manner to recover cell-based (cell-averaged) residuals. Next, these
residuals are mapped (distributed) to the surrounding nodes via (Lax–Wendroff) distribution
matrices after the inclusion of artificial dissipation contributions (to enhance numerical
stability, control grid-based oscillations and enable shock capturing). Thereafter, the node-
based residuals are adjusted for boundary conditions (derivative boundary conditions are
implemented during the assembling of the fluxes) and employed to update the node-based
variables in time. Once the norm (an area weighted L2 norm) of the node-based residuals falls
below a certain prescribed tolerance (usually 1.0×10−6), the numerical solutions are assumed
to have reached the steady state.

The turbulent flow equations that are decoupled from the mean-flow equations are solved
(for a known Navier–Stokes flow field) by directly extending the numerical methods presented
in this paper. The time step restrictions for the numerical stability and positivity preservation
are determined by the use of a simplified Chien k–e system, where the source terms have been
linearized. The restrictions on the time steps in order to obtain positive k and e roots are
determined by using another simplified point Chien k–e equation system, where in the point
k equation, e is fixed (at the previous time level) and in the point e equation, k is fixed (at the
previous time level); moreover, in the latter the damping function E(k, e) is treated as known
(by evaluating it with k and e values at the previous time level). Further details on these issues
can be found in Reference [14].

Multigrid is employed to provide convergence acceleration and it is only applied to the
mean-flow equations. The Multigrid algorithm used in the present work is that of Reference
[38]. In this algorithm, the smoothing relaxations are performed using the generalized
Lax–Wendroff method and the restriction operator is volume weighted; the prolongation
operator uses volume weighted interpolation. This scheme is based on the full approximation
scheme (FAS) of Brandt [39]. Furthermore, the algorithm also uses W cycles as opposed to V
cycles as it is seen to increase its robustness; the robustness has been further improved by
employing a full multigrid (FMG) start-up, where the initial guess for successively finer grids
is taken as the prolonged solution from the coarse grid. Typical grid sequences are four or five
levels.

The geometry and the mesh containing 129×81 points are shown in Figures 8 and 9
respectively. In designing the grid it has been ensured that the dimensionless wall co-ordinate
y+ is less than unity, with also 65 grid points along the plate and 40 within the boundary
layer. In the present work, due to the use of a low-Reynolds number k–e model where the
equations are integrated up to solid boundaries, a stretched grid within the boundary layer has
to be used in order to get sufficiently close to them, thereby making grid refinement studies
somewhat meaningless. Hence, grid refinement studies have not been undertaken in the present
work, although it has been demonstrated clearly for the model problems that the higher-order
schemes generate solutions that are more accurate than those from the first order accurate
scheme.

The turbulence model is applied only from the leading edge onwards; the area before it is
filled with a globally fixed level of free-stream k and e values (predicted by a prescribed value
of free-stream turbulence intensity, Tu [14]). When employing the Chakravarthy–Osher
third-order TVD scheme for the solution of the k–e equations, however, due to the extended
stencil for convection, the k and e values are linearly interpolated across the leading edge [14].

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 903–938



POSITIVITY PRESERVING POINTWISE IMPLICIT SCHEMES AND APPLICATIONS 923

Figure 8. Schematic diagram of the flat plate geometry. The flat plate occupies the region from X=0 to
X=Xmax and Xmax=1.0.

For the mean-flow equations, the inflow, outflow, and top boundaries are treated with
Riemann invariant based boundary conditions [14], and along the flat plate both components
of the velocity and the normal derivative of the temperature are set to zero. Along the cut
before the leading edge of the plate (Figure 8), the transverse velocity and transverse gradients
of the temperature and streamwise velocity were set to zero. For the k–e equations, the
condition k=e=0 is prescribed along the flat plate and the variables are either extrapolated
(linearly for FOU and quadratically for TVD schemes) or set to zero (on the assumption that
the flow at infinity is laminar) at the top and outflow boundaries (Figure 8) depending on

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 903–938
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Figure 9. Plot of the mesh (129×81 nodes) over the flat plate.

whether the boundary grid points satisfy locally outflow or inflow conditions. The initial
conditions for the mean flow field are provided by a turbulent flow solution obtained by using
the algebraic Baldwin–Lomax turbulence model and those for the k–e field are given by the
free-stream k and e values.

At the start of the computations, the k–e equations are iterated by themselves keeping the
mean flow field fixed (frozen). Then, once the k–e flow field has developed sufficiently, the
two systems of equations are iterated together by performing a mean-flow variable time update
(iteration) followed by a k–e variable time update (although there are many other ways of
iterating the mean-flow and k–e equation systems—see Reference [14]).

By adjusting the level of the free-stream k and e values, it is possible to make the Chien k–e

model predict transition at different locations. However, it is seen to occur too early [14],
which is a well-known property of this model. For a flat plate geometry, if the Reynolds
number is known, the position (past the leading edge) where transition occurs can be
calculated (for Re�=5×106 and Tu=1.0 per cent, transition occurs at 13.36 per cent of the
plate length past the leading edge). A procedure also described in Reference [14], which
involves the setting of the eddy viscosity and the production terms in the k and e equations to
zero before the transition grid point, rectifies the shortcoming of the model.

Numerical results with a free-stream Reynolds number (based on plate length) of 5×106

and Mach numbers of 0.2, 0.8, 1.5 for fully and partly turbulent flat plate flows are presented
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in Reference [14]. The greatest differences between the numerical and empirical results are seen
to occur for the supersonic case. Hence, the results for this test case and that involving
transition are presented in this paper.

The convergence histories for the iteration of the k–e equations for a fixed (frozen)
Navier–Stokes flow field and for the iteration of the two systems together are given in Figures
10 and 11 respectively; a tolerance of 1.0×10−12 was selected for the former as it is
sufficiently close to machine (double) precision and for the latter the flow was considered to
have reached the steady state when the global node-based residual norm R associated with
the Navier–Stokes flow quantities fell below 1.0×10−6.

The convergence results presented in Table VII indicate that in all cases the numerical
algorithms are stable and convergent and Multigrid (using the optimal parameters) is effective
in accelerating convergence and the speed-up factors are generally greater for the higher-order
(TVD) computations than the first-order (FOU) ones. Furthermore, in terms of the number of
iterations (work units), the TVD computations are not significantly more expensive than their
FOU counterparts.

The distribution of the skin-friction coefficients (cf) given in Figures 12 and 13 indicate that
for the supersonic test case even with 40 grid points in the boundary layer, solutions of FOU
and TVD schemes differ (but not drastically) with the latter giving a better agreement with the
empirical estimate (the Van Driest relation [40]). For the test case involving transition (Mach
number of 0.8), beyond transition the two sets of numerical predictions agree with each other
and they are also in excellent agreement with the empirical prediction; some evidence showing
the presence of numerical diffusion in the FOU solution is found in Figure 13.

Figure 10. Convergence histories for k and e when the k–e equations are iterated by themselves (Mach
number=1.5).
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Figure 11. Convergence histories for the mean-flow equations (Mach number=1.5) in terms of work
units on the finest grid.

Table VII. Summary of convergence results (in terms of work units on the finest grid) for fully and
partly turbulent flat plate flows.

Mach TVD FOU
number

Single grid Multigrid Speed-up Single grid Multigrid Speed-up
factorfactor

128 661 47 775 2.69 116 6710.2 42 269 2.76
70 911 14 705 4.820.8 65 631 15 223 4.31

1.5 22 506 5973 3.77 22 411 6207 3.61
0.8 (with 73 791 14 196 5.20 69 496 14 725 4.72

transition)

The surface temperature (T) plots given in Figures 14 and 15 are indicative of excessive
numerical diffusion present in the solutions due to the FOU scheme but otherwise the two sets
of numerical solutions are in agreement. The empirical estimate is the recovery temperature for
an adiabatic, zero pressure gradient flat plate [14,41,42].

The plots of k, e, and the eddy (turbulent) viscosity (mt) across the boundary layer presented
in Figures 16–18 too depict the excessive numerical diffusion present in the FOU scheme; k
and e have been plotted against a logarithmic scale in order to highlight the behavior within
the boundary layer more clearly. These profiles also resemble those in Reference [34].
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Figure 12. Skin-friction coefficients for fully turbulent flow with a Mach number of 1.5.

Figure 13. Skin-friction coefficients for turbulent flow with transition at a Mach number of 0.8.

The boundary layer profiles of the dimensionless streamwise velocity u+ (=u/ut where ut is
the friction velocity) in Figures 19 and 20 indicate that at both x stations, the agreement of the
numerical solutions with each other and with the empirical predictions (given in Reference
[14,41]) is excellent in the inner regions of the boundary layer. In the outer regions, the
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Figure 14. Surface temperature distribution for fully turbulent flow with a Mach number of 1.5.

Figure 15. Surface temperature distribution for turbulent flow with transition at a Mach number of 0.8.

numerical predictions at x=0.208 are poor and those at x=0.803 are better. Moreover, in all
cases, the solutions due to the TVD and FOU schemes are in close agreement.

In the computations described above, the pointwise time steps used in the k–e algorithm
were typically 80 per cent of those predicted by the analysis. In addition to ensuring the
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Figure 16. Boundary layer profiles of k for the test case with a Mach number of 1.5 (d=boundary layer
thickness at x station).

Figure 17. Boundary layer profiles of e for the test case with a Mach number of 1.5 (d=boundary layer
thickness at x station).
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Figure 18. Boundary layer profiles of mt for the test case with a Mach number of 1.5. (d�=boundary
layer thickness at x=1).

Figure 19. u+ boundary layer profiles at x=0.208 for the test case with a Mach number of 1.5
(y+ =dimensionless wall co-ordinate).
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Figure 20. u+ boundary layer profiles at x=0.803 for the test case with a Mach number of 1.5
(y+ =dimensionless wall co-ordinate).

stability and convergence of the algorithms, these time steps also maintained k and e

positive-valued and no ad hoc procedures (see, for example, Reference [32]) were required to
prevent k and e from becoming negative-valued.

8. CONCLUSIONS

A class of positivity preserving point implicit methods applicable to source term dominated
systems of differential equations has been constructed in this paper. These methods are
optimally suited for achieving steady state numerical solutions. The analysis of the discrete
(pointwise) equations in a simplified manner led to the determination of very reliable time step
restrictions that ensured the numerical stability and positivity preservation of the algorithms
and the existence of and convergence to positive-valued roots. The point implicit treatment of
the source terms did not adversely affect the positivity preservation, accuracy, or convergence
properties of the numerical schemes when post-first-order accurate TVD schemes were applied
to the discretization of convection. The operator splitting technique was adopted to handle
multidimensional convection terms. Numerical experimentation with model problems con-
firmed the validity of the analysis and the computational efficiency associated with the
third-order TVD scheme. The Newton method was successful in capturing the desired root(s).

The extension of the model problem ideas to the stiff Chien k–e system too produced
convergent and genuinely positivity preserving algorithms; no ad hoc procedures were required
to maintain the positiveness of k and e. The algorithms were able to cope with very general
free-stream and initial k and e values. Even though Multigrid was applied only to the
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mean-flow equations, an appreciable acceleration in convergence was observed. The numeri-
cal solutions indicated that although 40 points were placed within the boundary layer, the
higher-order solutions still differed (but not significantly) from the first-order accurate ones;
the lack of larger differences is due to the simple nature of this geometry, where the flow is
also grid-aligned (some non-grid-aligned flows are given in Reference [43]). With regard to
the convergence properties, particularly for higher Mach numbers, the higher-order accurate
algorithm was as good as and if not better than the first-order accurate one. Therefore, it
can be concluded that the approximation of convection with a higher-order, positivity
preserving numerical scheme and the pointwise implicit treatment of the source terms in the
solution of the Chien k–e turbulence model even for geometries as simple as the flat plate
are beneficial.

ACKNOWLEDGMENTS

The author would like to express his thanks and gratitude to Professor K.W. Morton for his guidance,
support and encouragement throughout the research. The author would also like to thank Professor
M.B. Giles for his guidance, advice and for teaching much about turbulence modeling. The help and
support offered by Dr P.I. Crumpton is also gratefully acknowledged. Thanks and gratitude go to the
Harold Hyam Wingate Foundation, the Overseas Research Students Awards Scheme, the Defense
Research Agency (Farnborough), the Stuart Fund (Balliol College, Oxford), and the Oxford Overseas
Bursary Scheme for their financial support.

APPENDIX A. PSEUDO-TIME STEP RESTRICTIONS FOR THE
ONE-DIMENSIONAL SCALAR MODEL PROBLEM

When the non-linear model equation

[Ut ]+aUx−bUxx=cU(1−U); a, b, c (global constants)\0 (31)

is discretized using the explicit, semi-implicit, and Gauss–Seidel convection–diffusion
schemes on a uniform mesh with spacing Dx, the resulting iterations with n=aDtj/Dx,
m=bDtj/Dx2, and z=Uj

n+1 respectively are

f(z)�cDtjz2+ (1−cDtj)z+ (Cj
nDtj−Uj

n)=0 (32)

f0 (z)�cDtjz
2+ (1+n+2m−cDtj)z+ (C0 j

nDtj−Uj
n)=0 (33)

f. (z)�cDtjz2+ (1+n+2m−cDtj)z+ (C. j
n+*Dtj−Uj

n)=0 (34)

where

Cj
n=

a
Dx

(Uj
n−Uj−1

n )−
b

Dx2 (Uj+1
n −2Uj

n+Uj−1
n ) (35)
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C0 j
n= −

a
Dx

Uj−1
n −

b
Dx2 (Uj+1

n +Uj−1
n ) (36)

C. j
n+*= −

a
Dx

Uj−1
n+1−

b
Dx2 (Uj+1

n +Uj−1
n+1) (37)

and it is observed that C0 j
n, C. j

n+*B0 on the assumption that (i) Uj
n\0 Öj—that is, the

previous time values of U are positive, and (ii) Uj−1
n+1\0, which implies that the latest updates

at grid locations before node j are also positive.
In each case, the discrete equations can be readily solved at each mesh point exactly but the

Newton method will be employed to do so because the eventual aim is to solve the non-linear
k–e equations; the root to which the Newton method converges should be positive-valued
(Section 2).

A.1. Time step restrictions

The aim when solving the point equations at each mesh point is to have only a single real
positive root (time update).

Taking into account the quadratic nature of Equation (32) with the explicit discretization of
the convection–diffusion terms, a single real positive root exists when DtjBDt j

+e and

Á
Ã
Í
Ã
Ä

Dt j
+e=

Uj
n

Cj
n , Cj

n\0

Dt j
+e=�, Cj

n50
(38)

For the semi-implicit and Gauss–Seidel discretizations of the convection–diffusion terms,
however, there is no limit on Dtj (that is, Dt+ =�) in order to obtain a single real positive
root because C0 j

n, C. j
n+*B0.

The linearized version of Equation (5) in the neighborhood of the asymptotically stable root
U=1 (letting U=1+u) is

[ut ]+aux−buxx= −cu (39)

and it has the same form as Equation (4), which was studied before and hence for this
equation, modified maximum principles apply to algorithms with

(a) the explicit discretization of the convection–diffusion terms when n+2m51 so that
DtjBDtMe, where

DtMe=
� a
Dx

+
2b
Dx2

�−1

(40)

(b) the semi-implicit and Gauss–Seidel discretizations of the convection–diffusion terms
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when 1+n+2m+cDtj\0, showing that there are no restrictions placed on Dtj (as c\0).

Therefore, as expected, (b) is less restrictive than (a).
Now the time step restrictions for the solution of the point equations with the Newton

method will be described. When the Newton method is employed to solve Equations (32)–(34),
if g(z) represents f(z), f0 (z) or f. (z), then the m+1 Newton iteration is

zm+1=zm−
g(zm)
g %(zm)

(41)

which at node j takes the following forms:

(a) Explicit convection–diffusion

zm+1=
cDtj(zm)2+ (Uj

n−Cj
nDtj)

1+cDtj(2zm−1)
(42)

(b) Semi-implicit convection–diffusion

zm+1=
cDtj(zm)2+ (Uj

n−C0 j
nDtj)

1+n+2m+cDtj(2zm−1)
(43)

(c) Gauss–Seidel convection–diffusion

zm+1=
cDtj(zm)2+ (Uj

n−C. j
n+*Dtj)

1+n+2m+cDtj(2zm−1)
(44)

Therefore, in order to maintain the Newton iterates, zm+1 positive (assuming zm\0):

1. if zm\1/2, the explicit discretization may need a time step restriction depending on
whether Uj

n+ (c(zm)2−Cj
n)Dtj-0; however, the time step limit (38) that is employed for

the outer iteration ensures that the Newton iterates will be positive. For zm\1/2, the
semi-implicit and Gauss–Seidel discretizations do not place any limits on Dtj because
C0 j

n, C. j
n+*B0; and

2. if 0BzmB1/2, the explicit discretization requires the additional condition (in addition to
having Uj

n+ (c(zm)2−Cj
n)Dtj\0)

DtjB
1

c(1−2zm)
=Dt j

Ne (45)

The restrictions on Dtj due to the semi-implicit discretization are

1+n+2m+c(2zm−1)Dtj=1+aDtj\0 (46)

with a=a/Dx+2b/Dx2+c(2zm−1). Then, if a\0, there is no limit on Dtj, but when aB0
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DtjB
1

�a �=Dt j
Ns (47)

If, however, it is assumed that the mesh is sufficiently refined, then the term a/Dx+2b/Dx2

will dominate and cause a to be positive-valued. The corresponding maximum permitted time
step, DtNg, for the Gauss–Seidel discretization has the same form as that for the semi-implicit
one. Therefore, there are again advantages of using the semi-implicit and Gauss–Seidel
discretizations for the convection–diffusion terms.

The analysis for this one-dimensional scalar model problem can be summarized as follows:

Proposition
For the one-dimensional scalar model problem, at each node j

1. it is guaranteed that there will exist a single real positive root,
2. the Newton method with a positive starting guess will converge to this positive-valued root

by generating only positive-valued iterates (the inner iteration), and
3. the outer iteration for the corresponding linearized equation will obey a modified maxi-

mum principle that ensures the numerical stability and positivity preservation of the scheme
if the following conditions are satisfied:
(I) when the Newton iterates are less than one half in magnitude, for the explicit

discretization if DtjBmin(Dt j
+e, DtMe, Dt j

Ne), for the semi-implicit discretization if
DtjBDt j

Na, and for the Gauss–Seidel discretizations if DtjBDt j
Ng; and

(II) when the Newton iterates are greater than one half in magnitude, for the explicit
discretization if DtjBmin(Dt j

+e, DtMe) and for the semi-implicit and Gauss–Seidel
discretizations there are no limits on Dtj.

APPENDIX B. THE CHIEN k–e MODEL OF TURBULENCE

The dimensionless Chien version of the k–e model is [14]

((r̄k)
(t

+
(

(xa

!
r̄V0 ak−

mk

Re�

(k
(xa

"
=Sk (48)

((r̄e)
(t

+
(

(xa

!
r̄V0 ae−

me

Re�

(e

(xa

"
=Se (49)

where

mk=
m+mt

Prk
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me=
m+mt

Pre

mt=Cmfmr̄
k2

e
Re�

and the source terms Sk, Se are

Sk=CmfmSr̄
k2

e
−

2
3

r̄
�(V0 g

(xg

�
k− r̄e−

2mk
Re�yn

2 (50)

Se=C1CmfmSr̄k−
2
3

C1r̄
�(V0 g

(xg

�
e−C2Er̄

e2

k
−

2mFe

Re�yn
2 (51)

with S=S0 ab(V0 a/(xb and the following damping functions and set of model constants:

fm=1−exp(−0.0115y+), E=1−
2
9

exp
�

−
Rt

2

36
�

, F=exp(−0.5y+)

Cm=0.09, C1=1.35, C2=1.8, Prk=1.0, Pre=1.3

In the above model; r̄ is the Reynolds averaged density, V0 a is the mass-averaged velocity,
S0 ab= (V0 a,b+V0 b,a)−2

3dabV0 g,g is the compressible strain tensor, yn is the normal distance from
a solid boundary, m is the molecular viscosity, k is the turbulent kinetic energy, e is the rate
of dissipation of k, Prk, Pre are the turbulent Prandtl numbers, Rt= r̄k2/me is the turbulence
Reynolds number, and Re� is the free-stream Reynolds number.
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